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Behavior of damage spreading in the two-dimensional Blume-Capel model
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The damage spreading technique has been used to study the general integer and half-integer spin-S Blume-
Capel model on the square lattice within a Metropolis-type dynamics. ForS51 and 2 integer spins, our results
suggest that there exists one multicritical point along the order-disorder transition line; forS53/2 and 5/2
half-integer spins, our results show that this multicritical behavior does not exist for this model.
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I. INTRODUCTION

TheS51 Blume-Capel model was originally proposed
study the first-order phase transition in magnetic syste
@1,2# and has also been used in describing He3-He4 mixtures
@3#. The Hamiltonian can be written as

H52J(̂
i j &

SiSj1G(
i

Si
2. ~1!

The first summation is carried out only over nearest-neigh
pairs of spins, the second summation runs over all sites
square lattice.J.0 is the ferromagnetic exchange intera
tion between nearest neighbor spins,G is the single spin
anisotropy parameter. The spin variableSi assumes value
2S,2S11, . . . ,S21,S, whereS is either a positive intege
or a positive half integer. TheS51 case has been extensive
studied by a variety of methods such as mean-field@1,2#,
variational methods@4#, constant coupling approximatio
@5#, Monte Carlo simulations@6,7#, transfer matrix @8#,
renormalization-group@9,10#, finite-size scaling based o
transfer matrix@11#, etc. It is well established that for dimen
sion d>2, the S51 Blume-Capel model exhibits a line o
continuous phase transition~Ising-type!, a line of first-order
phase transitions and a tricritical point where those two li
meet.

For values of spinS.1, however, the situation is quit
unclear and fewer results are available. For theS53/2 case,
the mean-field calculation@12#, correlated effective-field
treatment@13#, differential operator technique@14#, finite-
size scaling based on transfer matrix@11#, and conventional
equilibrium Monte Carlo simulations@15,16# indicate a
second-order phase transition with no tricritical point and
separated first-order transition line that terminates in an
lated multicritical point. In contradiction with these results
renormalization-group calculation@10# presents a unique
first-order transition line at low temperature, which term
nates in the second-order transition line at a tetracrit
point. Similar results are also obtained by finite-si
renormalization-group calculations@17# and other conven-
tional equilibrium Monte Carlo simulations@18#.
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The damage spreading~DS! technique, i.e., measuring th
Hamming distance between two different initial configur
tions subject to a specific dynamics and to the same ther
noise as they evolve in time, has been successfully applie
many magnetic models. It turns out that this method is l
sensitive to the static fluctuations, when compared to
conventional Monte Carlo method where the time evolut
of a single copy is investigated. The DS technique repres
presently an important tool in the study of the dynamics
well as the static behavior in magnetic systems@19–28#. In
fact, for the controversies surrounding theS53/2 Blume-
Capel model, the DS method allows us for the first time
distinguish definitely between the two conflicting scenar
discussed in the literature.

In this paper, the DS technique is also applied to study
Blume-Capel model on the square lattice. Our results sh
that for the integerS51 and 2 Blume-Capel models, ther
exists a multicritical point at low temperature, which is n
present for the half-integerS53/2 and 5/2 spin models.

The layout of this paper is as follows. In Sec. II, w
describe the damage spreading technique and the Metrop
type dynamics that we will use. In Sec. III, we present t
results for the integer spinS51 and 2 Blume-Capel models
In Sec. IV, we perform the DS calculations for the ha
integer spinS53/2 and 5/2 cases. Finally, Sec. V presen
the conclusions.

II. THE DAMAGE SPREADING TECHNIQUE AND A
METROPOLIS-TYPE DYNAMICS

Our numerical simulations are implemented on square
tice with N spins and linear sizeL (N5L2 sites! submitted to
periodic boundary conditions. A configuration of lattice spi
at time t is

C~ t !5$Si~ t !% i 51,2,3, . . . ,N. ~2!

In order to make a configurationC(t) evolve in time, we use
a Metropolis-type dynamics that has been successfully
plied to theS51/2 andS51 Ising models and the mixed
spin Ising model on the square lattice@29,30#.

During each time intervaldt51/N, one spin sitei is cho-
sen randomly. The spin valueD i(t1dt) at timet1dt is then
proposed by
©2002 The American Physical Society03-1
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D i~ t1dt !

55
2S, 0<Zi1~ t !,1/~2S11!

2S11, 1/~2S11!<Zi1~ t !,2/~2S11!

. . . . . .

S21, ~2S21!/~2S11!<Zi1~ t !,2S/~2S11!

S, 2S/~2S11!<Zi1~ t !,1,

~3!

whereZi1(t) is an uniform random number, 0<Zi1(t)<1.
One then updates the spin according to the following

namics rule

Ci~ t1dt !5H D i~ t1dt !, Pi~ t !>Zi2~ t !

Ci~ t !, otherwise,
~4!

where

Pi~ t !5exp~2DHi /T!, ~5!

DHi5H$D i~ t1dt !%2H$Ci~ t !%, ~6!

where 0<Zi2(t)<1 is another uniform random number,T is
the temperature of the system in units ofJ/KB , G is in units
of J, andKB is the Boltzmann’s constant.

We consider two different initial configurationsCA(0)
andCB(0) at timet50, and let them evolve in time accord
ing to the same above dynamic rule with the same seque
of random numbers for updating the spins. Then two c
figurations at timet, CA(t) andCB(t), are computed through
the following Hamming distance~or damage! between them

D~ t !5
1

N (
i 51

N

@12d„Ci
A~ t !,Ci

B~ t !…#, ~7!

whered(,) is the Kronecker delta function. PhysicallyD(t)
measures the fractions of the spins that differ in the t
replicas at timet. In calculations, we averageD(t) over
many samples. The average distance is

^D~ t !&5
1

Ns
(
j 51

Ns

D j~ t !, ~8!

whereD j (t) is the damage distance for thejth independent
trial, Ns is the number of independent sample, the sum
over all trials ~here, we have not used the convention
method that the average was taken over only those sam
where their̂ D(t)& are not zero!.

We also study the ‘‘damage susceptibility’’

sD(t)5A^D2~ t !&2^D~ t !&2, ~9!

which measures the fluctuations of damageD(t). This quan-
tity will provide a set of information to characterize differe
phases of the system, and is very sensitive to the phase
sition.

We will investigate a quantity that we define as the ra
of NSi5c ~number of spins whose spinSi takes one specified
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valuec P(2S,2S11, . . . ,S21,S) to N at the equilibrium
state. In order to decrease the fluctuations, we take an a
age over those two replicas~configurationA andB)

^PSi5c&5
1

Ns
(
k51

Ns FNSi5c
A 1NSi5c

B

2N
G

k

. ~10!

^PSi5c& depends on the temperature, time, initial conditio
and the noise.̂& in Eq. ~10! denotes an average over man
samples. It is actually another type of order parameter.

In the following calculations presented here, the init
configuration is chosen to be

CA~0!52CB~0!Þ0, ; i , ~11!

i.e., we choosê D(0)&51. For example, for theS52
case, we may chooseCA(0)52CB(0)5$2%, or, CA(0)
52CB(0)5$1%, these two choices will not alter the feature
of the calculation results. The calculations could have b
done starting with other initial conditions, e.g., two rando
initial configurations. With this condition, the equilibrium o
the system takes longer to be established at low tempera
however, the results would also be very similar@29#.

Those three quantitieŝD(t)&, sD(t) , and ^PSi5c&, to-
gether with temperature, initial condition, and any other p
rameters, will lead to information about the criticality of th
system.

III. RESULTS FOR THE BLUME-CAPEL MODEL
WITH SÄ1 AND 2

We choose to study several values ofG by our DS proce-
dure. The simulations have been performed for system
L540, t51000, and the results are averaged overNs5200
samples. We observed that the finite-time effect fort
51000 andt52000 is relatively small for our chosen initia
condition. In the following calculations, we will assume th
the systems have reached their equilibrium states at
51000 for the chosen initial condition of Eq.~11!.

We first study the Blume-Capel model with spinS51 and
initial conditionCA(0)52CB(0)5$1%. The results are plot-
ted in Fig. 1. We explain the Fig. 1 as follows. Figure 1~a!
shows the results of̂D(t)& as a function ofT and G. We
may observe a completely different behavior of^D(t)&: for
G/J<2.0, there exist Ising-like continuous phase transitio
for the model for thoseG values. We clearly observe tw
distinct regions, a low-temperature region (T,TD), where
^D(t)& does not vanish and a high-temperature regionT
>TD), where thê D(t)& vanishes; forG/J.2.0, contrary to
the G/J<2.0 cases,̂D(t)& are zero for all temperature re
gions. ForG/J<2.0 cases in Fig. 1~a!, two distinct tempera-
ture regions divided by a damage spreading transition t
peratureTD are believed to denote the corresponding sta
continuous phase transition, and has been observed in
of the Ising-like systems. From Fig. 1~a! we may estimate
the approximate~continuous! dynamical transition tempera
ture TD to be 2.35, 2.3, 2.2, 2.1, 1.85, 1.55, and 0.6
G/J524.0,23.0,22.0,21.0,0.0,1.0, and 2.0, respectivel
In Fig. 1~b!, we plot the temperature dependence of the fl
3-2
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BEHAVIOR OF DAMAGE SPREADING IN THE TWO- . . . PHYSICAL REVIEW E 65 056103
FIG. 1. The damage spreading results forS51 Blume-Capel model on the square lattice atL540, t51000, andNs5200. In the figure,
a completely different behavior can be observed forG/J<2.0 and forG/J.2.0. The vertical dotted line marks the exactly known value
Tc for the standard Ising model on the square lattice. Figure 1~a! shows the average damage^D(t)& as a function of temperatureT andG.
Figure 1~b! shows the damage susceptibilitysD(t) as a function of temperature andG. The full line is a guide to the eye. From the maximu
values ofsD(t) , we may locate the phase transition temperature. Figure 1~c! shows the ratiôPSi50& as a function of temperatureT andG.
The ^PSi50&50.0 corresponds to the standard Ising model. Figure 1~d! shows the finite-temperature phase diagram forS51 Blume-Capel
model on the square lattice by damage spreading procedure. The solid line represents the second-order transition. The white squ
the tricritical point at which the phase transition changes from second order to first order.
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tuation sD(t) for our chosenG values. We have observe
that: for G/J<2.0, the simulations show that there is an
most null fluctuation in the low- and high-temperature
gions, except near the damage spreading transition temp
ture TD where it rises abruptly; forG/J.2.0, sD(t)50 for
all temperature regions. The peaklike curves ofsD(t) in the
G/J<2.0 regions are the features of second-order transit
and from the maximum values ofsD(t) we may get the more
accurate~continuous! dynamical transition temperatures tha
TD . We estimate~run for several different random numbe
sequences! Ts to beTs52.2560.10, 2.2060.12, 2.1060.10,
1.9560.08, 1.7560.05, 1.4560.01, and 0.5660.03 for G/J
524.0, 23.0, 22.0, 21.0, 0.0, 1.0, and 2.0, respectivel
In Fig. 1~c!, the interesting features of^PSi50& as a function

of T andG/J are plotted. We regard̂PSi50& as an important
factor to explain the multicritical behavior for this model. W
05610
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can also see there exist two different regions for thoseG
values: forG/J<2.0, the^PSi50& increases as the temper

ture increases. In the limit ofG→2`, this model is reduced
to the standard Ising model, andS can only take11 or
21 values. ForG/J>2.01, contrary toG/J<2.0 cases,
^PSi50& decreases as the temperature increases. In the

of G→1`, this model reaches a phase whereSi reaches 0 at
every site.

The behavior of thisS51 Blume-Capel model could be
explained as follows. In this model, we only consider t
nearest-neighbor interaction betweenSi spins. If we regard
theSi50 state as a ‘‘hole,’’ then the lattice sites are occup
by either Si561 spins and the holes. ParameterG can
change the relative number ofSi561 spins and the holes in
the system ~representing chemical potential!. When G
→2`, there is no hole in the system, corresponding to
3-3
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FIG. 2. The damage spreading results forS52 Blume-Capel model on the square lattice atL540, t51000, andNs5200. The notes are
the same as in Fig. 1
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standard Ising model. WhenG increases, the number o
holes increases, the interaction of the total system beco
smaller, the second-order phase transition temperature
becomes smaller. WhenG increases to a critical value, th
Si561 spins can no longer form the infinite clusters, t
interaction of the system becomes weak and can no lon
support the long range order of the system, then there ar
continuous phase transitions, however, the clusters comp
of Si561 spins and the holes can support the first-or
phase transition for the system. From the angle of
Metropolis-type dynamics, because of the smaller interac
@i.e., DHi in Eq. ~6! approaches to zero#, whenG is larger
than this criticalG value, the probability@i.e., Pi in Eq. ~5!#
to accept the proposed spin value increases quickly, and
causeŝ D(t)& to go to zero quickly for thoseG values. The
above criticalG value is, therefore, the multicritical poin
i.e., the meeting point of the second-order and the first-or
transition lines. For theS51 Blume-Capel model, this mee
ing point isGtri 52.0 in our DS simulations, and at this poi
an obvious discontinuity or ‘‘jump’’ of̂ D(t)& and ^PSi50&
can be observed in Figs. 1~a! and 1~c!. At last, whenG
→1`, the sites are all occupied bySi50 spin state.

According to our DS results, we may schematically p
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the finite-temperature phase diagram for this model as
Fig. 1~d!. We useTs obtained fromsD(t)2T relationship in
Fig. 1~b! as the~second-order! phase transition temperature
In Fig. 1~d!, the general shape of the phase diagram sho
very good agreement between our calculations and othe
miliar results. From the data of our results, we estimate
tricritical point @white square in Fig. 1~d!# for S51 Blume-
Capel model to be (Ttri ,Gtri /J)5(0.5660.03,2.00). The
known static values for the tricritical point for this model a
~0.609, 1.965! @11#, ~0.608,1.967! @7#, (0.61060.005,1.966
60.001) @8#, ~1.088,1.8848! @14#, ~1.333,1.848! @12#, etc.

Figure 2 shows the calculation results for the integeS
52 Blume-Capel model with the initial conditionCA(0)
52CB(0)5$1%. Very similar features toS51 case are ob-
tained by our DS simulations. From the maximum values
sD(t) in Fig. 2~b! we may get the~continuous! dynamical
transition temperatures to beTs57.6060.25, 7.4560.20,
7.1060.15, 6.4060.20, 5.5060.25, 4.2060.20, and 1.00
60.15 forG/J524.0, 23.0, 22.0, 21.0, 0.0, 1.0, and 2.0
respectively, and then we get the phase diagram forS52
Blume-Capel model in Fig. 2~d! with the tricritical point
@white square in Fig. 2~d!# for S52 Blume-Capel model to
be (Ttri ,Gtri /J)5(1.0060.15,2.00). The general shape
3-4
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BEHAVIOR OF DAMAGE SPREADING IN THE TWO- . . . PHYSICAL REVIEW E 65 056103
FIG. 3. The damage spreading results forS53/2 Blume-Capel model on the square lattice atL540, t51000, andNs5200. Figure 3~a!
shows the average damage^D(t)& as a function of temperatureT andG. Figure 3~b! shows the damage susceptibilitysD(t) as a function of
temperature andG. The full line is a guide to the eye. Figure 3~c! shows^PuSi u53/2& and ^PuSi u51/2& as a function of temperature atG/J
52.0 and 2.01. Figure 3~d! shows the phase diagram forS53/2 Blume-Capel model on the square lattice by damage spreading proce
The solid line represents the second-order transition. The lower arrow points to the transition temperature (4KBTc /J52.269) of the standard
Ising model on the square lattice. See text for details.
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this phase diagram is also in agreement with the known
sults, such as the mean-field theory@12# and the effective-
field theory@14#. The known static values for the tricritica
point for this model are~1.645,1.994! @14#, ~1.333,1.848!
@12#, etc.

So far, we have had the knowledge of integerS51 and
S52 Blume-Capel models with the existence of multicritic
behavior. In the following section, we use the same DS p
cedure to investigate the half-integerS53/2 and S55/2
Blume-Capel models. We found that the behavior of tho
models are different from above integer spin models.

IV. RESULTS FOR THE BLUME-CAPEL MODEL
WITH GÄ3Õ2 AND 5Õ2

For the half-integer spin Blume-Capel model, we choo
to put the factor of 1/4~product of the twoSi spin values of
1/2! into theJ andG parameters in Eq.~1!. For example, for
S53/2 model, the parameters in Eq.~1! becomeJ/4 and
05610
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G/4, and the spinSi can take one of the values amon
~23,21,1,3!. One advantage of this procedure is that it
easy for us to calculateD(t) in Eq. ~7!, since the spinSi still
takes the integer values now. We first apply our DS pro
dure to the controversial case ofS53/2 Blume-Capel mode
concerning the existence or nonexistence of a multicriti
point along the transition line, which we have mentioned
Sec. I.

The results are plotted in Fig. 3 with the initial conditio
CA(0)52CB(0)5$3%. For this model we have observed
different behavior from previous integer models. Figure 3~a!
shows the results of̂D(t)& as a function ofT andG. There
exist only Ising-like continuous phase transitions for t
model. WhenG→1`, the model goes to the standard Isin
model with the critical temperature 4KBTc /J52.269 ~the
dotted line in the figure!, which is consistent with the
temperature 4tc54KBTc /J54$1/@2 ln(A211)#%52/ ln(A2
11)52.269 as shown in Ref.@11#. In Fig. 3~b!, we plot the
temperature dependence of the fluctuationsD(t) for our cho-
3-5
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FIG. 4. The damage spreading results forS55/2 Blume-Capel model on the square lattice atL540, t51000, andNs5200. The notes
are the same as in Fig. 3.
ig
tu

u
th

is
fs

te

e.
p
nt

e
c

long
rve

er
n

tion

d

f the
if-
tiza-

out
senG values@the dotted line has the same meaning as in F
3~a!#, and we estimate the continuous transition tempera
to be 4KBTc /J519.0060.40, 18.2060.36, 17.1260.34,
15.4060.50, 13.6060.30, 10.7060.30, 3.3060.45, 3.10
60.20, 2.4060.10, and 2.4060.10 for G/J524.0,23.0,
22.0, 21.0, 0.0, 1.0, 2.0, 2.01,3, and 4, respectively. O
results indicate the absence of a multicritical point along
phase transition line.

In order to detect the existence or nonexistence of an
lated first-order phase transition line as shown in Re
@12,11,16# for this model, we plot̂ PuSi u53/2& and ^PuSi u51/2&
at G/J52.0 and 2.01 in Fig. 3~c!. In the literature@11,16#,
the range of this isolated first-order transiton line is presen
between (4KBT/J,G/J)5(3.2,1.96) and~1.6,2.0!, we plot
two dashed lines in Fig. 3~c! to cover this temperature rang
In Fig. 3~c!, we can observe an obvious exchange of the s
values, indicating the first-order transition of two differe
ordered ferromagnetic phases, one is magnetizationm1
→3/2 and the other ism2 →1/2. Figure 3~d! is the plot of the
phase diagram for this model. We still useTs obtained from
sD(t)2T relationship in Fig. 3~b! as the~second-order! phase
transition temperature. In Fig. 3~d!, the general shape of th
phase diagram shows very good agreement between our
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culations and other known results@12,11,16#. In this model,
because of the absence of zero value for the spins, the
range order will not vanish, therefore, we can only obse
the second-order transition along the transition line whenG
is changed.

Figure 4 shows the calculation results for the half-integ
S55/2 Blume-Capel model with the initial conditio
CA(0)52CB(0)5$3%. Features very similar toS53/2 case
are obtained by our DS simulations. Because the transi
temperatures are very high for negativeG for this model, we
only present the results for several positiveG values. From
the maximum values ofsD(t) in Fig. 4~b! we estimate con-
tinuous dynamical transition temperatures to be 4KBTc /J
54.5060.20, 4.0060.22, 3.6060.23, 2.4060.15, 2.40
60.15, and 2.4060.10 forG/J52.01,2.05, 2.10, 2.5, 3, an
4, respectively. In Fig. 4~c!, we plot ^PuSi u55/2&, ^PuSi u53/2&,

and ^PuSi u51/2& as a function of temperatureT at G/J51.98

and 2.01. We can also observe an obvious exchange o
spin values, indicating the first-order transitions of three d
ferent ordered ferromagnetic phases, one is the magne
tion m1→5/2, m2→3/2 and the other ism3→1/2, and there-
fore, having confirmed the mean-field theory results ab
3-6
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BEHAVIOR OF DAMAGE SPREADING IN THE TWO- . . . PHYSICAL REVIEW E 65 056103
the existence of two isolated first-order transition lines
this model @12#. At last, we plot the phase diagram forS
55/2 Blume-Capel model in Fig. 4~d!, where the model also
goes to the standard Ising model with 4KBTc /J52.269
whenG→1`.

V. CONCLUSIONS

In this work, we investigate, by means of the dama
spreading technique, the dynamical behavior of integeS
51,2 and half-integerS53/2,5/2Blume-Capel models on a
square lattice within a Metropolis-type dynamics. We fi
that the behavior of the systems are qualitatively different
the integer- and the half-integer-spin versions of this mod
For theS51 andS52 Blume-Capel models, there exists
multicritical point along the transition line, which strong
depends on the values of theG parameter; For theS53/2
andS55/2 cases, our results indicate the absence of a m
.

.
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ticritical point along the transition line whenG is changed. In
the context of the controversies surrounding theS53/2
Blume-Capel model, our DS results allow us to distingu
definitely between two proposed contradictory scenarios
addition, our DS simulations present evidence of isola
first-order transition line~s! for the half-integer Blume-Cape
model. A physical explanation to this quite distinct critic
behavior is given.
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@18# F.C. SáBarreto and O.F. Alcantara Bonfim, Physica A172, 378

~1991!.
@19# H.E. Stanley, D. Stauffer, J. Kerte´sz, and H.J. Herrmann, Phys

Rev. Lett.59, 2326~1987!.
@20# A.M. Mariz, H.J. Herrmann, and L. de Arcangelis, J. St

Phys.59, 1043~1990!.
@21# A. Coniglio, L. de Arcangelis, H.J. Herrmann, and N. Ja

Europhys. Lett.8, 315 ~1989!.
@22# A.U. Neumann and B. Derrida, J. Phys.~France! 49, 1647

~1988!.
@23# M.N. Barber and B. Derrida, J. Stat. Phys.51, 877 ~1988!.
@24# O. Golinelli and B. Derrida, J. Phys. A22, L939 ~1989!.
@25# N. Jan and L. de Arcangelis, Annu. Rev. Comput. Phys.1, 1

~1994!.
@26# P. Grassberger, J. Phys. A547, 214 ~1995!.
@27# U.M.S. Costa and I.V. Rojdestvenski, Phys. Lett. A231, 128

~1997!.
@28# M.F. de A. Bibiano, F.G. Brady Moreira, and A.M. Mariz

Phys. Rev. E55, 1448~1997!.
@29# Ce-Jun Liu, H.B. Schu¨ttler, and Jia-Zhen Hu, Commun. Theo

Phys.35, 480 ~2001!.
@30# Ce-Jun Liu, H.B. Schu¨ttler, and Jia-Zhen Hu, Phys. Rev. E65,

016114~2002!.
3-7


