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Behavior of damage spreading in the two-dimensional Blume-Capel model
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The damage spreading technique has been used to study the general integer and half-intSgluspén-
Capel model on the square lattice within a Metropolis-type dynamicsSEdr and 2 integer spins, our results
suggest that there exists one multicritical point along the order-disorder transition lin8=f@&#2 and 5/2
half-integer spins, our results show that this multicritical behavior does not exist for this model.
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[. INTRODUCTION The damage spreadiriBS) technique, i.e., measuring the
Hamming distance between two different initial configura-
The S=1 Blume-Capel model was originally proposed to tions subject to a specific dynamics and to the same thermal
study the first-order phase transition in magnetic systemsoise as they evolve in time, has been successfully applied to
[1,2] and has also been used in describing-He* mixtures  many magnetic models. It turns out that this method is less
[3]. The Hamiltonian can be written as sensitive to the static fluctuations, when compared to the
conventional Monte Carlo method where the time evolution
of a single copy is investigated. The DS technique represents
H= —JE 38,—+GZ S,z. (1) presently an important tool in the study of the dynamics as
0N ‘ well as the static behavior in magnetic systgh8—2§. In
fact, for the controversies surrounding tBe=3/2 Blume-
The first summation is carried out only over nearest-neighbo€apel model, the DS method allows us for the first time to
pairs of spins, the second summation runs over all sites of distinguish definitely between the two conflicting scenarios
square latticeJ>0 is the ferromagnetic exchange interac- discussed in the literature.
tion between nearest neighbor spi@3,is the single spin In this paper, the DS technique is also applied to study the
anisotropy parameter. The spin varialdeassumes values Blume-Capel model on the square lattice. Our results show
—S,—S+1,...,5-1S, whereSis either a positive integer that for the integeiS=1 and 2 Blume-Capel models, there
or a positive half integer. Th8=1 case has been extensively exists a multicritical point at low temperature, which is not
studied by a variety of methods such as mean-fl@i@], present for the half-integed=3/2 and 5/2 spin models.
variational methodg4], constant coupling approximation  The layout of this paper is as follows. In Sec. Il, we
[5], Monte Carlo simulationg6,7], transfer matrix[8], describe the damage spreading technique and the Metropolis-
renormalization-groud 9,10], finite-size scaling based on type dynamics that we will use. In Sec. Ill, we present the
transfer matri{ 11], etc. It is well established that for dimen- results for the integer spii=1 and 2 Blume-Capel models.
sion d=2, the S=1 Blume-Capel model exhibits a line of In Sec. IV, we perform the DS calculations for the half-
continuous phase transitiqising-type, a line of first-order integer spinS=3/2 and 5/2 cases. Finally, Sec. V presents
phase transitions and a tricritical point where those two lineghe conclusions.

meet.

For values of spirS>1, however, the situation is quite
unclear and fewer results are available. For $8€3/2 case, Il. THE DAMAGE SPREADING TECHNIQUE AND A
the mean-field calculatiori12], correlated effective-field METROPOLIS-TYPE DYNAMICS

treatment[13], differential operator techniqugl4], finite-
size scaling based on transfer mafrid], and conventional
equilibrium Monte Carlo simulation§15,16 indicate a
second-order phase transition with no tricritical point and
separated first-order transition line that terminates in an iso-
lated multicritical point. In contradiction with these results, a
renormalization-group calculatiohlQ] presents a unique C()y={S(t)} i=123...N. 2)
first-order transition line at low temperature, which termi-
nates in the second-order transition line at a tetracritical
point. Similar results are also obtained by finite-sizeln order to make a configuratidd(t) evolve in time, we use
renormalization-group calculatiorfd7] and other conven- a Metropolis-type dynamics that has been successfully ap-
tional equilibrium Monte Carlo simulatior[4.8]. plied to theS=1/2 andS=1 Ising models and the mixed
spin Ising model on the square latti29,30.
During each time intervabt=1/N, one spin sité is cho-
*Email address: liu@hal.physast.uga.edu sen randomly. The spin valug (t+ 6t) at timet+ 6t is then
TEmail address: hbs@hal.physast.uga.edu proposed by

Our numerical simulations are implemented on square lat-
tice with N spins and linear sizi (N=L? site9 submitted to
eriodic boundary conditions. A configuration of lattice spins
t timet is
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Ai(t+6t) valuec e (—S,—S+1,...,S—1,S) to N at the equilibrium
state. In order to decrease the fluctuations, we take an aver-
=S, 0<Z;y(1)<1/(25+1) age over those two replicasonfigurationA and B)
— =/.
S+1, 1U2S+1)<Z;(1)<2/(2S+1) LN [NA_ANE,
={ ... <PS|=C>:N_Z — N (10)
S—1, (25-1)/(25+1)<Z;,(1)<25/(25+1) s k=1 .

S, 25/(2S+1)<Z;;(1)<1, <Ps,:c> depends on the temperature, time, initial conditions,

3) and the noise() in Eq. (10) denotes an average over many
samples. It is actually another type of order parameter.

whereZ;,(t) is an uniform random number,<0Z;,(t)<1. In the following calculations presented here, the initial
One then updates the spin according to the following dy-configuration is chosen to be
namics rule )
CcA(0)=—-CB0)#0, Vi, (11

Ai(t+at),  Pi(t)=Zi(1)

Ci(t+ét)= _ (4) i.e., we choose(D(0))=1. For example, for theS=2
Ci(t), otherwise, case, we may choos€”(0)=—CB(0)={2}, or, CA(0)
where =—CB(0)={1}, these two choices will not alter the features
of the calculation results. The calculations could have been
P.(t)=exp(—AH;/T), (5)  done starting with other initial conditions, e.g., two random
initial configurations. With this condition, the equilibrium of
AH;=H{A(t+ o)} —H{Ci(1)}, (6)  the system takes longer to be established at low temperature,
however, the results would also be very simila#].
where 0<Z;,(t)=<1 is another uniform random numbérjs Those three quantitieéD(t)), opy, and(Ps_c), to-
the temperature of the system in unitsJéKg, G is in units  gether with temperature, initial condition, and any other pa-
of J, andKg is the Boltzmann’s constant. rameters, will lead to information about the criticality of the

We consider two different initial configuration8”(0) system.
andCB(0) at timet=0, and let them evolve in time accord-

ing to the same above dynamic rule with the same sequence || RESULTS FOR THE BLUME-CAPEL MODEL

of random numbers for updating the spins. Then two con- WITH S=1 AND 2

figurations at time, C*(t) andC8(t), are computed through

the following Hamming distancér damaggbetween them We choose to study several values@®by our DS proce-

dure. The simulations have been performed for system size
1N L =40, t=1000, and the results are averaged dMgr 200
D(t)=5 2, [1-38(CH(1),CP1)], (7)  samples. We observed that the finite-time effect for
=t =1000 andt=2000 is relatively small for our chosen initial
where 8(,) is the Kronecker delta function. Physicalyt) condition. In the following calculat_ions, we vyill assume that
measures the fractions of the spins that differ in the twdh€ Systems have reached their equilibrium statest at

replicas at timet. In calculations, we averagb(t) over  — 1000 for the chosen initial condition of EL1).
many samples. The average distance is - We first _s_tudy the Blume-Capel model with sf8s 1 and
initial conditionC*(0)=— CB(0)={1}. The results are plot-
Ns ted in Fig. 1. We explain the Fig. 1 as follows. Figur)l
(D(1))= No ]21 D;(1), (8)  shows the results ofD(t)) as a function ofT and G. We
s [=

may observe a completely different behavior(8f(t)): for
G/J=<2.0, there exist Ising-like continuous phase transitions
trial, N is the number of independent sample, the sum iéd(?f the model for t?OSEG values. We clearly obser\;]e two
over all trials (here, we have not used the conventional Istinct regions, a oyv-r:emperatﬁ_rehregloﬁ{TD), where
method that the average was taken over only those sampléB(t)) does not vanish and a high-temperature region (

whereDj(t) is the damage distance for thi# independent

where theirD(t)) are not zern =Tp), where thg D(t)) vanishes; foiG/J>2.0, contrary to
We also study the “damage susceptibility” the G/J=<2.0 cases{D(t)) are zero for aII.te-mperature re-
gions. ForG/J=<2.0 cases in Fig. (&), two distinct tempera-
Tbn= WDZ(1))—(D(1))2, (9)  ture regions divided by a damage spreading transition tem-

peratureT are believed to denote the corresponding static
which measures the fluctuations of dam&yé). This quan- continuous phase transition, and has been observed in most
tity will provide a set of information to characterize different of the Ising-like systems. From Fig(d we may estimate
phases of the system, and is very sensitive to the phase tratite approximatécontinuoug dynamical transition tempera-
sition. ture Tp to be 2.35, 2.3, 2.2, 2.1, 1.85, 1.55, and 0.6 for
We will investigate a quantity that we define as the ratioG/J=—-4.0,-3.0,-2.0,-1.0,0.0,1.0, and 2.0, respectively.
of Ns—c (number of spins whose spi) takes one specified In Fig. 1(b), we plot the temperature dependence of the fluc-
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FIG. 1. The damage spreading results $or 1 Blume-Capel model on the square latticd.at40, t=1000, and\g= 200. In the figure,
a completely different behavior can be observed@dd=<2.0 and forG/J>2.0. The vertical dotted line marks the exactly known value of
T, for the standard Ising model on the square lattice. Figae shows the average dama@e(t)) as a function of temperatufeandG.
Figure Ib) shows the damage susceptibility, ) as a function of temperature a@ The full line is a guide to the eye. From the maximum
values ofop (), we may locate the phase transition temperature. Figimeshows the ratig PSIZO) as a function of temperatufeandG.
The<P3|:0)=O.O corresponds to the standard Ising model. Figude shows the finite-temperature phase diagramSerl Blume-Capel
model on the square lattice by damage spreading procedure. The solid line represents the second-order transition. The white square denote:
the tricritical point at which the phase transition changes from second order to first order.

tuation opyy for our chosenG values. We have observed can also see there exist two different regions for thGse
that: for G/J<2.0, the simulations show that there is an al-values: forG/J<2.0, the(Pg o) increases as the tempera-
most null fluctuation in the low- and high-temperature re-ture increases. In the limit @ — — o, this model is reduced
gions, except near the damage spreading transition temper the standard Ising model, arélcan only take+1 or

ture Tp where it rises abruptly; foG/J>2.0, op;)=0 for —1 values. ForG/J=2.01, contrary toG/J<2.0 cases,

all temperature regions. The peaklike curvessgfy) in the  (Ps_,) decreases as the temperature increases. In the limit

G/J=<2.0 regions are the features of second-order transitionys 5 _, 1 o this model reaches a phase whereeaches 0 at
and from the maximum values ofy ;) we may get the more every site ’

accuratgcontinuoug dynamical transition temperatures than The behavior of thisS=1 Blume-Capel model could be
Tp . We estimaterun for several different random number o, 12ined as follows. In this model, we only consider the

ie§5lf8%985Ti' 2053322212'2553006110’ 25%%3{% g;?toel/g nearest-neighbor interaction betwegnspins. If we regard
i S DOt 94, and . ’ or the S;=0 state as a “hole,” then the lattice sites are occupied

=—4.0,-3.0,-20,-1.0, 0.0, 1.0, and 2.0, respectively. by either S=+1 spins and the holes. Paramet@rcan
In Fig. 1(c), the interesting features ¢Ps o) as a function  .pn 46 the relative number 8f=+ 1 spins and the holes in

of TandG/J are plotted. We regar(Ps o) as an important  the system (representing chemical potentialWhen G
factor to explain the multicritical behavior for this model. We — — <o, there is no hole in the system, corresponding to the
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FIG. 2. The damage spreading results$er2 Blume-Capel model on the square latticéat40, t= 1000, andNg=200. The notes are
the same as in Fig. 1

standard Ising model. Whe increases, the number of the finite-temperature phase diagram for this model as in
holes increases, the interaction of the total system becomdsg. 1(d). We useT,, obtained fromop),— T relationship in
smaller, the second-order phase transition temperature al$tg. 1(b) as the(second-ordérphase transition temperature.
becomes smaller. Whe@ increases to a critical value, the |n Fig. 1(d), the general shape of the phase diagram shows
Si=*1 spins can no longer form the infinite clusters, thevery good agreement between our calculations and other fa-
interaction of the system becomes weak and can no longeniliar results. From the data of our results, we estimate the
support the long range order of the system, then there are nRficritical point [white square in Fig. )] for S=1 Blume-
continuous phase transitions, however, the clusters compos@hpel model to be T ,Gyi /J) = (0.56+=0.03,2.00). The
of S==1 spins and the holes can support the first-ordeknown static values for the tricritical point for this model are
phase transition for the system. From the angle of our0.609, 1.96%5[11], (0.608,1.96Y [7], (0.610+0.005,1.966
Metropolis-type dynamics, because of the smaller interaction- 0.001)[8], (1.088,1.8848[14], (1.333,1.848[12], etc.
[i.e., AH; in Eq. (6) approaches to zefowhenG is larger Figure 2 shows the calculation results for the inte§er
than this criticalG value, the probabilityi.e., P; in Eq.(5)] =2 Blume-Capel model with the initial conditio©”(0)
to accept the proposed spin value increases quickly, and the—e_cB(o):{l}_ Very similar features t&=1 case are ob-
causegD(t)) to go to zero quickly for thos& values. The  tained by our DS simulations. From the maximum values of
above criticalG value is, therefore, the multicritical point, op(y in Fig. 2b) we may get the(continuou$ dynamical
i.e., the meeting point of the second-order and the first-ordefransition temperatures to bE,=7.60+0.25, 7.45-0.20,
transition lines. For th&=1 Blume-Capel model, this meet- 7 10+0.15, 6.430.20, 5.5-0.25, 4.2-0.20, and 1.00
ing point isG,; = 2.0 in our DS simulations, and at this point +0.15 forG/J= —4.0, —3.0, —2.0, —1.0, 0.0, 1.0, and 2.0,
an obvious discontinuity or “jump” ofD(t)) and(Ps_-o)  respectively, and then we get the phase diagramSfep
can be observed in Figs.(d and Xc). At last, whenG Blume-Capel model in Fig. (@) with the tricritical point
— +o0, the sites are all occupied I§=0 spin state. [white square in Fig. @)] for S=2 Blume-Capel model to
According to our DS results, we may schematically plotbe (T ,G;/J)=(1.00+0.15,2.00). The general shape of
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FIG. 3. The damage spreading results $sr 3/2 Blume-Capel model on the square latticd &40, t = 1000, and\¢ = 200. Figure &)
shows the average damag(t)) as a function of temperatufieandG. Figure 3b) shows the damage susceptibility, ;) as a function of
temperature an¢. The full line is a guide to the eye. Figuréc} shows(P‘sJ:a,z) and(PW:l,z) as a function of temperature &/J
=2.0 and 2.01. Figure(8) shows the phase diagram f8r 3/2 Blume-Capel model on the square lattice by damage spreading procedure.

The solid line represents the second-order transition. The lower arrow points to the transition tempekafligg {4 2.269) of the standard
Ising model on the square lattice. See text for details.

this phase diagram is also in agreement with the known reG/4, and the spinS, can take one of the values among
sults, such as the mean-field thegf?] and the effective- (—3,—1,1,3. One advantage of this procedure is that it is

field theory[14]. The known static values for the tricritical easy for us to calculat®(t) in Eq.(7), since the spirs; still

FOi?t for this model arg(1.645,1.994 [14], (1.333,1.848  takes the integer values now. We first apply our DS proce-
12], etc.

. dure to the controversial case & 3/2 Blume-Capel model
So far, we have had the knowledge of inte§erl and  concerning the existence or nonexistence of a multicritical

S=2 Blume-Capel models with the existence of multicritical point along the transition line, which we have mentioned in
behavior. In the following section, we use the same DS proSec. |I.

cedure to investigate the half-integ&=3/2 and S=5/2 The results are plotted in Fig. 3 with the initial condition
Blume-Capel models. We found that the behavior of thosec”(0)=—CB(0)={3}. For this model we have observed a

models are different from above integer spin models. different behavior from previous integer models. Figufa) 3

shows the results dfD(t)) as a function oflf andG. There
. RESUTS FOR THEBLUNE CapELoDEL 94 7y sk contiuous pfise tarsiions (e
WITH G=32 AND 52 : ' 9 9

model with the critical temperaturekgT./J=2.269 (the
For the half-integer spin Blume-Capel model, we choosedotted line in the figurg which is consistent with the

to put the factor of 1/4product of the twdS, spin values of temperature §=4KgT./J=4{1/[2 In(v2+ 1)]}:2/In(\/§
1/2) into theJ andG parameters in Eq1). For example, for +1)=2.269 as shown in Ref11]. In Fig. 3b), we plot the
S=3/2 model, the parameters in E(l) becomeJ/4 and temperature dependence of the fluctuatigy,, for our cho-
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FIG. 4. The damage spreading results $3¢5/2 Blume-Capel model on the square latticd at40, t=1000, and\;=200. The notes
are the same as in Fig. 3.

senG valueg[the dotted line has the same meaning as in Figculations and other known resu(t$2,11,18. In this model,
3(8)], and we estimate the continuous transition temperaturbecause of the absence of zero value for the spins, the long
to be 4&KpgT./J=19.00+0.40, 18.26:0.36, 17.120.34, range order will not vanish, therefore, we can only observe
15.40+0.50, 13.66:0.30, 10.76:0.30, 3.3-0.45, 3.10 the second-order transition along the transition line wen
+0.20, 2.40:0.10, and 2.460.10 for G/J=—4.0,-3.0, is changed.
—-2.0,-1.0, 0.0, 1.0, 2.0, 2.01,3, and 4, respectively. Our Figure 4 shows the calculation results for the half-integer
results indicate the absence of a multicritical point along thes—5/2 Bjume-Capel model with the initial condition
phase transition line. _ _ . C"(0)=—CB(0)={3}. Features very similar t8=3/2 case

In order to detect the existence or nonexistence of an iSo5ye gphtained by our DS simulations. Because the transition
lated flrst-orde( phase transition line as shown in Refstemperatures are very high for negatiédor this model, we
[12,11,1§ for this mOd?l’ VYe plo(P\5.|:3/%> and(Pjs|-11) only present the results for several posit@evalues. From
atG/J=2.0 and 2.01 in Fig. @). In the literature[11,16,  the maximum values ofrp, in Fig. 4(b) we estimate con-
the range of this isolated first-order transiton line is presenteg,,ous dynamical transition temperatures to Hég#./J
between (KgT/J,G/J)=(3.2,1.96) and(1.6,2.0, we plot  _ 4501020, 4.08:0.22, 3.60:0.23, 2.40-0.15, 2.40
two dashed lines in Fig.(8) to cover this temperature range. +0.15. and 2.480.10 forG/J=2.01.2.05. 2.10. 2.5 3. and

In Fig. 3(c), we can observe an obvious exchange of the spi . :
values, indicating the first-order transition of two differenth’ respectively. In Fig. &), we plot(Ps-s2), (P|s|-312),

ordered ferromagnetic phases, one is magnetizatign and(Pjs|-12 as a function of temperatureat G/J=1.98
—3/2 and the other i, — 1/2. Figure 8d) is the plot of the and 2.01. We can also observe an obvious exchange of the
phase diagram for this model. We still uSg obtained from  spin values, indicating the first-order transitions of three dif-
op(y— T relationship in Fig. &) as the(second-ordgmphase  ferent ordered ferromagnetic phases, one is the magnetiza-
transition temperature. In Fig(®, the general shape of the tion m;—5/2, m,— 3/2 and the other im;— 1/2, and there-
phase diagram shows very good agreement between our cdibre, having confirmed the mean-field theory results about
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the existence of two isolated first-order transition lines forticritical point along the transition line whea is changed. In
this model[12]. At last, we plot the phase diagram f&  the context of the controversies surrounding tBe 3/2
=5/2 Blume-Capel model in Fig.(d), where the model also Blume-Capel model, our DS results allow us to distinguish
goes to the standard Ising model wittK4T./J=2.269 definitely between two proposed contradictory scenarios. In
whenG— +o, addition, our DS simulations present evidence of isolated
first-order transition lings) for the half-integer Blume-Capel
model. A physical explanation to this quite distinct critical

. . . behavior is given.
In this work, we investigate, by means of the damage

spreading technique, the dynamical behavior of inte§er
=1,2 and half—ln_tegeiS: 3/2,5/2 Slume—CapeI m_odels ona ACKNOWLEDGMENTS
square lattice within a Metropolis-type dynamics. We find

that the behavior of the systems are qualitatively different for We wish to thank D. P. Landau, S. P. Lewis, Shan-Ho
the integer- and the half-integer-spin versions of this modelTsai, and J. A. Plascak for helpful conversations, and the use
For theS=1 andS=2 Blume-Capel models, there exists a of the computer facilities in the Center for Simulational
multicritical point along the transition line, which strongly Physics, the Department of Physics and Astronomy, Univer-
depends on the values of tii& parameter; For th&=3/2  sity of Georgia. This work was supported by the US National
and S=5/2 cases, our results indicate the absence of a muscience Foundation under NSF Grant No. DMR-9970291.
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